Enrollment No:	Exam Seat No:
Enrollment No:	Exam Seat No:

C.U.SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Advanced Calculus

Subject Code: 4SC03ADC1 Branch: B.Sc. (Mathematics)

Date: 22/11/2022 Time: 11:00 To 02:00 Marks: 70 Semester: 3

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

- True or False If $f'(x) > 0 \ \forall x \in (a, b)$ then the f is said to be an decreasing **a**) (01)function on interval (a, b).
- Define: Point of Inflexion. b) (01)
- Define: Beta function. (01)
- The value of $\Gamma\left(\frac{1}{2}\right)$ is__ (01)
- What is the relation between Beta function and Gamma function? (01)e)
- find $\lim_{\substack{x \to 5 \\ y \to -2}} x^3 + 4x^2y 5xy$ f) (01)
- If $u = y^x$ then find $\frac{\partial u}{\partial x}$. (01)g)
- The degree of homogeneous function $f(x,y) = x^2 + 2xy + y^2$ is_____. Find the interval in which the function $x^2 4x + 3$ is increasing. h) (01)
- (02)i)
- If $u = e^{xy}$ then find $\frac{\partial^2 u}{\partial x^2}$. j) (02)
- k) Find the value of $\beta(3,4)$. (02)

Attempt any four questions from Q-2 to Q-8

Attempt all questions Q-2 (14)

- Find the intervals in which the function $f(x) = 2x^3 + 3x^2 36x 12$ is (05)increasing or decreasing.
- Find the interval in which the curve $y = x^4 4x^3$ concave up and concave (05)down.
- Find the points of inflection on the curve $f(x) = x^2 5x + 6$. (04)

Prove Symmetric property of Beta function. (05)

b) Show that
$$\beta(p,q) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \, d\theta$$
. (05)

c) Prove that
$$\Gamma \frac{1}{2} = \sqrt{\pi}$$
. (04)

Q-4 Attempt all questions (14)

a) Evaluate:
$$\lim_{\substack{x \to 1 \ y \to 2}} \frac{x + y}{x - y}$$
 and $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x - 1}{y - 1}$ (05)

b) Evaluate:
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 - y^3}{x^2 + y^2}$$
 (05)

c) Evaluate:
$$\lim_{\substack{x \to 2 \\ y \to 3}} \frac{x^2 + y^3}{2x^2y}$$
 (04)

Q-5 Attempt all questions (14)

a) If
$$u = e^{xyz}$$
 then prove that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$. (05)

b) If
$$Z = \frac{x^2 + y^2}{x + y}$$
 then show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$. (05)

c) If
$$u = tan^{-1} \frac{y}{x}$$
 then find $\frac{\partial^2 u}{\partial x \partial y}$. (04)

Q-6 Attempt all questions (14)

a) State and prove Euler's first theorem for homogeneous function. (05)

b) If
$$u = \sin^{-1}\frac{x}{y} + \cos^{-1}\frac{y}{z} + \tan^{-1}\frac{z}{x}$$
 then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$ (05)

c) If
$$f(x, y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}$$
 then show that (04)

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} - 2f(x, y) = 0.$$

Q-7 Attempt all questions (14)

a) Find the intervals in which $f(x) = x^4 - 6x^3$ is concave upward and concave downward. (05)

b) Evaluate:
$$\int_{0}^{\frac{\pi}{2}} \sin^5 \theta \cos^6 \theta \, d\theta. \tag{05}$$

c) Show that
$$\frac{1}{5}\beta(\frac{2}{5},\frac{1}{5}) = \int_{0}^{\infty} \frac{x}{\sqrt{1-x^5}} dx$$
. (04)

Attempt all questions Q-8

Attempt all questions (14)
a) If
$$u = e^{x^2 + y^2 + z^2}$$
 then show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = 8xyz(e^{x^2 + y^2 + z^2})$. (06)

b) If
$$x^3 + y^3 + z^3 - 3xyz = 0$$
 then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. (04)

c) Evaluate
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{3x^2 - y^2 + 5}{x^2 + y^2 + 2}$$
. (04)

